Local maps
Content created by Egbert Rijke and Fredrik Bakke
Created on 2023-09-11.
Last modified on 2023-09-12.
module orthogonal-factorization-systems.local-maps where
Imports
open import foundation.fibers-of-maps open import foundation.propositions open import foundation.universe-levels open import orthogonal-factorization-systems.local-families
Idea
A map g : A → B is said to be local at f : Y → X, or f-local, if
all its fibers are. Likewise, a family
B : A → UU l is local at f if each B x is.
Definition
module _ where is-local-map : {l1 l2 l3 l4 : Level} {Y : UU l1} {X : UU l2} (f : Y → X) {A : UU l3} {B : UU l4} → (A → B) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-local-map f g = is-local-family f (fiber g)
Properties
Being local is a property
module _ {l1 l2 : Level} {Y : UU l1} {X : UU l2} (f : Y → X) where is-property-is-local-map : {l3 l4 : Level} {A : UU l3} {B : UU l4} (g : A → B) → is-prop (is-local-map f g) is-property-is-local-map g = is-property-is-local-family f (fiber g) is-local-map-Prop : {l3 l4 : Level} {A : UU l3} {B : UU l4} (g : A → B) → Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-local-map-Prop g = is-local-family-Prop f (fiber g)
A type B is f-local if and only if the terminal projection B → unit is f-local
This remains to be formalized.
A map is f-local if and only if it is f-orthogonal
This remains to be formalized.
See also
Recent changes
- 2023-09-12. Egbert Rijke. Beyond foundation (#751).
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-09-11. Fredrik Bakke and Egbert Rijke. Some computations for different notions of equivalence (#711).