Transport along identifications
Content created by Fredrik Bakke
Created on 2023-09-11.
Last modified on 2023-09-11.
module foundation-core.transport-along-identifications where
Idea
Given a type family B
over A
, an
identification p : x = y
in A
and an
element b : B x
, we can transport the element b
along the identification
p
to obtain an element tr B p b : B y
.
The fact that tr B p
is an equivalence is
recorded in
foundation.transport-along-identifications
.
Definition
Transport
tr : {l1 l2 : Level} {A : UU l1} (B : A → UU l2) {x y : A} (p : x = y) → B x → B y tr B refl b = b
Properties
Transport preserves concatenation of identifications
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where tr-concat : {x y z : A} (p : x = y) (q : y = z) (b : B x) → tr B (p ∙ q) b = tr B q (tr B p b) tr-concat refl q b = refl
Transposing transport along the inverse of an identification
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where eq-transpose-tr : {x y : A} (p : x = y) {u : B x} {v : B y} → v = tr B p u → tr B (inv p) v = u eq-transpose-tr refl q = q eq-transpose-tr' : {x y : A} (p : x = y) {u : B x} {v : B y} → tr B p u = v → u = tr B (inv p) v eq-transpose-tr' refl q = q
Every family of maps preserves transport
preserves-tr : {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} (f : (i : I) → A i → B i) {i j : I} (p : i = j) (x : A i) → f j (tr A p x) = tr B p (f i x) preserves-tr f refl x = refl
Recent changes
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).