Large categories

Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke, Elisabeth Bonnevier, Julian KG, fernabnor and louismntnu

Created on 2022-03-11.
Last modified on 2023-09-13.

module category-theory.large-categories where
Imports
open import category-theory.categories
open import category-theory.isomorphisms-in-large-precategories
open import category-theory.large-precategories
open import category-theory.precategories

open import foundation.action-on-identifications-binary-functions
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.identity-types
open import foundation.sets
open import foundation.universe-levels

Idea

A large category in Homotopy Type Theory is a large precategory for which the identities between the objects are the isomorphisms. More specifically, an equality between objects gives rise to an isomorphism between them, by the J-rule. A large precategory is a large category if this function is an equivalence. Note that being a large category is a proposition since is-equiv is a proposition.

Definition

is-large-category-Large-Precategory :
  {α : Level  Level} {β : Level  Level  Level} 
  (C : Large-Precategory α β)  UUω
is-large-category-Large-Precategory C =
  {l : Level} (X Y : obj-Large-Precategory C l) 
  is-equiv (iso-eq-Large-Precategory C X Y)

record
  Large-Category (α : Level  Level) (β : Level  Level  Level) : UUω
  where
  constructor
    make-Large-Category

  field
    large-precategory-Large-Category :
      Large-Precategory α β

    is-large-category-Large-Category :
      is-large-category-Large-Precategory large-precategory-Large-Category

open Large-Category public
module _
  {α : Level  Level} {β : Level  Level  Level}
  (C : Large-Category α β)
  where

  obj-Large-Category : (l : Level)  UU (α l)
  obj-Large-Category =
    obj-Large-Precategory (large-precategory-Large-Category C)

  hom-Large-Category :
    {l1 l2 : Level} 
    obj-Large-Category l1 
    obj-Large-Category l2 
    Set (β l1 l2)
  hom-Large-Category =
    hom-Large-Precategory (large-precategory-Large-Category C)

  type-hom-Large-Category :
    {l1 l2 : Level}
    (X : obj-Large-Category l1) (Y : obj-Large-Category l2) 
    UU (β l1 l2)
  type-hom-Large-Category X Y = type-Set (hom-Large-Category X Y)

  is-set-type-hom-Large-Category :
    {l1 l2 : Level}
    (X : obj-Large-Category l1) (Y : obj-Large-Category l2) 
    is-set (type-hom-Large-Category X Y)
  is-set-type-hom-Large-Category X Y =
    is-set-type-Set (hom-Large-Category X Y)

  comp-hom-Large-Category :
    {l1 l2 l3 : Level}
    {X : obj-Large-Category l1}
    {Y : obj-Large-Category l2}
    {Z : obj-Large-Category l3} 
    type-hom-Large-Category Y Z 
    type-hom-Large-Category X Y 
    type-hom-Large-Category X Z
  comp-hom-Large-Category =
    comp-hom-Large-Precategory (large-precategory-Large-Category C)

  id-hom-Large-Category :
    {l1 : Level} {X : obj-Large-Category l1} 
    type-hom-Large-Category X X
  id-hom-Large-Category =
    id-hom-Large-Precategory (large-precategory-Large-Category C)

  associative-comp-hom-Large-Category :
    {l1 l2 l3 l4 : Level}
    {X : obj-Large-Category l1} {Y : obj-Large-Category l2}
    {Z : obj-Large-Category l3} {W : obj-Large-Category l4} 
    (h : type-hom-Large-Category Z W)
    (g : type-hom-Large-Category Y Z)
    (f : type-hom-Large-Category X Y) 
    ( comp-hom-Large-Category (comp-hom-Large-Category h g) f) 
    ( comp-hom-Large-Category h (comp-hom-Large-Category g f))
  associative-comp-hom-Large-Category =
    associative-comp-hom-Large-Precategory (large-precategory-Large-Category C)

  left-unit-law-comp-hom-Large-Category :
    {l1 l2 : Level}
    {X : obj-Large-Category l1} {Y : obj-Large-Category l2}
    (f : type-hom-Large-Category X Y) 
    ( comp-hom-Large-Category id-hom-Large-Category f)  f
  left-unit-law-comp-hom-Large-Category =
    left-unit-law-comp-hom-Large-Precategory
      ( large-precategory-Large-Category C)

  right-unit-law-comp-hom-Large-Category :
    {l1 l2 : Level}
    {X : obj-Large-Category l1} {Y : obj-Large-Category l2}
    (f : type-hom-Large-Category X Y) 
    ( comp-hom-Large-Category f id-hom-Large-Category)  f
  right-unit-law-comp-hom-Large-Category =
    right-unit-law-comp-hom-Large-Precategory
      ( large-precategory-Large-Category C)

  ap-comp-hom-Large-Category :
    {l1 l2 l3 : Level}
    {X : obj-Large-Category l1}
    {Y : obj-Large-Category l2}
    {Z : obj-Large-Category l3}
    {g g' : type-hom-Large-Category Y Z} (p : g  g')
    {f f' : type-hom-Large-Category X Y} (q : f  f') 
    comp-hom-Large-Category g f  comp-hom-Large-Category g' f'
  ap-comp-hom-Large-Category p q =
    ap-binary comp-hom-Large-Category p q

  comp-hom-Large-Category' :
    {l1 l2 l3 : Level}
    {X : obj-Large-Category l1}
    {Y : obj-Large-Category l2}
    {Z : obj-Large-Category l3} 
    type-hom-Large-Category X Y 
    type-hom-Large-Category Y Z 
    type-hom-Large-Category X Z
  comp-hom-Large-Category' f g = comp-hom-Large-Category g f

Categories obtained from large categories

module _
  {α : Level  Level} {β : Level  Level  Level}
  (C : Large-Category α β)
  where

  precategory-Large-Category : (l : Level)  Precategory (α l) (β l l)
  precategory-Large-Category =
    precategory-Large-Precategory (large-precategory-Large-Category C)

  is-category-precategory-Large-Category :
    (l : Level)  is-category-Precategory (precategory-Large-Category l)
  is-category-precategory-Large-Category l X Y =
    is-equiv-htpy
      ( iso-eq-Large-Precategory (large-precategory-Large-Category C) X Y)
      ( compute-iso-eq-Large-Precategory
        ( large-precategory-Large-Category C) X Y)
      (is-large-category-Large-Category C X Y)

  category-Large-Category : (l : Level)  Category (α l) (β l l)
  pr1 (category-Large-Category l) = precategory-Large-Category l
  pr2 (category-Large-Category l) = is-category-precategory-Large-Category l

Recent changes