The Yoneda lemma for categories

Content created by Fredrik Bakke

Created on 2023-09-18.
Last modified on 2023-09-18.

module category-theory.yoneda-lemma-categories where
Imports
open import category-theory.categories
open import category-theory.functors-categories
open import category-theory.natural-transformations-categories
open import category-theory.representable-functors-categories
open import category-theory.yoneda-lemma-precategories

open import foundation.category-of-sets
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.retractions
open import foundation.sections
open import foundation.sets
open import foundation.universe-levels

Idea

Given a category C, an object c, and a functor F from C to the category of sets, there is an equivalence between the set of natural transformations from the functor represented by c to F and the set F c.

More precisely, the Yoneda lemma asserts that the map from the type of natural transformations to the type F c defined by evaluating the component of the natural transformation at the object c at the identity arrow on c is an equivalence.

Definition

module _
  {l1 l2 : Level} (C : Category l1 l2) (c : obj-Category C)
  (F : functor-Category C (Set-Category l2))
  where

  yoneda-evid-Category :
    natural-transformation-Category
      ( C)
      ( Set-Category l2)
      ( rep-functor-Category C c)
      ( F) 
    type-Set (obj-functor-Category C (Set-Category l2) F c)
  yoneda-evid-Category = yoneda-evid-Precategory (precategory-Category C) c F

  yoneda-extension-Category :
    type-Set (obj-functor-Category C (Set-Category l2) F c) 
    natural-transformation-Category
      C (Set-Category l2) (rep-functor-Category C c) F
  yoneda-extension-Category =
    yoneda-extension-Precategory (precategory-Category C) c F

  section-yoneda-evid-Category :
    section yoneda-evid-Category
  section-yoneda-evid-Category =
    section-yoneda-evid-Precategory (precategory-Category C) c F

  retraction-yoneda-evid-Category :
    retraction yoneda-evid-Category
  retraction-yoneda-evid-Category =
    retraction-yoneda-evid-Precategory (precategory-Category C) c F

  yoneda-lemma-Category : is-equiv yoneda-evid-Category
  yoneda-lemma-Category = yoneda-lemma-Precategory (precategory-Category C) c F

  equiv-yoneda-lemma-Category :
    ( natural-transformation-Category
      ( C)
      ( Set-Category l2)
      ( rep-functor-Category C c) (F)) 
    ( type-Set (obj-functor-Category C (Set-Category l2) F c))
  pr1 equiv-yoneda-lemma-Category = yoneda-evid-Category
  pr2 equiv-yoneda-lemma-Category = yoneda-lemma-Category

Recent changes