The precategory of functors and natural transformations between two fixed precategories

Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Daniel Gratzer and Egbert Rijke

Created on 2023-01-16.
Last modified on 2023-09-15.

module category-theory.precategory-of-functors where
Imports
open import category-theory.functors-precategories
open import category-theory.natural-transformations-precategories
open import category-theory.precategories

open import foundation.dependent-pair-types
open import foundation.universe-levels

Idea

Functors between precategories and natural transformations between them introduce a new precategory whose identity map and composition structure are inherited pointwise from the codomain precategory.

Definition

module _
  {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4)
  where

  functor-precategory-Precategory :
    Precategory (l1  l2  l3  l4) (l1  l2  l4)
  pr1 functor-precategory-Precategory = functor-Precategory C D
  pr1 (pr2 functor-precategory-Precategory) F G =
    natural-transformation-Precategory-Set C D F G
  pr1 (pr2 (pr2 functor-precategory-Precategory)) =
    ( λ {F} {G} {H}  comp-natural-transformation-Precategory C D F G H) ,
    ( λ {F} {G} {H} {I} h g f 
      associative-comp-natural-transformation-Precategory
        C D {F} {G} {H} {I} f g h)
  pr2 (pr2 (pr2 functor-precategory-Precategory)) =
    (id-natural-transformation-Precategory C D) ,
    ( λ {F} {G} 
      left-unit-law-comp-natural-transformation-Precategory C D {F} {G}) ,
    ( λ {F} {G} 
      right-unit-law-comp-natural-transformation-Precategory C D {F} {G})

Recent changes