Connected types

Content created by Egbert Rijke, Fredrik Bakke and Jonathan Prieto-Cubides

Created on 2022-02-18.
Last modified on 2023-06-10.

module foundation.connected-types where
Imports
open import foundation.contractible-types
open import foundation.truncations
open import foundation.universe-levels

open import foundation-core.constant-maps
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.propositions
open import foundation-core.truncated-types
open import foundation-core.truncation-levels

Idea

A type is said to be k-connected if its k-truncation is contractible.

Definition

is-connected-Prop : {l : Level} (k : 𝕋)  UU l  Prop l
is-connected-Prop k A = is-contr-Prop (type-trunc k A)

is-connected : {l : Level} (k : 𝕋)  UU l  UU l
is-connected k A = type-Prop (is-connected-Prop k A)

is-prop-is-connected :
  {l : Level} (k : 𝕋) (A : UU l)  is-prop (is-connected k A)
is-prop-is-connected k A = is-prop-type-Prop (is-connected-Prop k A)

Properties

A type A is k-connected if and only if the map B → (A → B) is an equivalence for every k-truncated type B

is-equiv-diagonal-is-connected :
  {l1 l2 : Level} {k : 𝕋} {A : UU l1} (B : Truncated-Type l2 k) 
  is-connected k A 
  is-equiv  (b : type-Truncated-Type B)  const A (type-Truncated-Type B) b)
is-equiv-diagonal-is-connected B H =
  is-equiv-comp
    ( precomp unit-trunc (type-Truncated-Type B))
    ( λ b  const _ _ b)
    ( is-equiv-diagonal-is-contr H (type-Truncated-Type B))
    ( is-truncation-trunc B)

Recent changes