One object precategories
Content created by Fredrik Bakke
Created on 2023-09-15.
Last modified on 2023-09-15.
module category-theory.one-object-precategories where
Imports
open import category-theory.endomorphisms-in-precategories open import category-theory.precategories open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.unit-type open import foundation.universe-levels open import group-theory.monoids
Definition
is-one-object-prop-Precategory : {l1 l2 : Level} → Precategory l1 l2 → Prop l1 is-one-object-prop-Precategory P = is-contr-Prop (obj-Precategory P) is-one-object-Precategory : {l1 l2 : Level} → Precategory l1 l2 → UU l1 is-one-object-Precategory P = type-Prop (is-one-object-prop-Precategory P) One-Object-Precategory : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) One-Object-Precategory l1 l2 = Σ (Precategory l1 l2) (is-one-object-Precategory) module _ {l1 l2 : Level} (P : One-Object-Precategory l1 l2) where precategory-One-Object-Precategory : Precategory l1 l2 precategory-One-Object-Precategory = pr1 P is-one-object-precategory-One-Object-Precategory : is-one-object-Precategory precategory-One-Object-Precategory is-one-object-precategory-One-Object-Precategory = pr2 P object-One-Object-Precategory : obj-Precategory precategory-One-Object-Precategory object-One-Object-Precategory = center is-one-object-precategory-One-Object-Precategory
Properties
Monoids are one-object precategories
module _ {l : Level} (M : Monoid l) where hom-one-object-precategory-Monoid : unit → unit → Set l hom-one-object-precategory-Monoid star star = set-Monoid M type-hom-one-object-precategory-Monoid : unit → unit → UU l type-hom-one-object-precategory-Monoid x y = type-Set (hom-one-object-precategory-Monoid x y) comp-hom-one-object-precategory-Monoid : {x y z : unit} → type-hom-one-object-precategory-Monoid y z → type-hom-one-object-precategory-Monoid x y → type-hom-one-object-precategory-Monoid x z comp-hom-one-object-precategory-Monoid {star} {star} {star} = mul-Monoid M associative-comp-hom-one-object-precategory-Monoid : {x y z w : unit} → (h : type-hom-one-object-precategory-Monoid z w) (g : type-hom-one-object-precategory-Monoid y z) (f : type-hom-one-object-precategory-Monoid x y) → comp-hom-one-object-precategory-Monoid ( comp-hom-one-object-precategory-Monoid h g) ( f) = comp-hom-one-object-precategory-Monoid ( h) ( comp-hom-one-object-precategory-Monoid g f) associative-comp-hom-one-object-precategory-Monoid {star} {star} {star} {star} = associative-mul-Monoid M associative-composition-structure-one-object-precategory-Monoid : associative-composition-structure-Set hom-one-object-precategory-Monoid pr1 associative-composition-structure-one-object-precategory-Monoid = comp-hom-one-object-precategory-Monoid pr2 associative-composition-structure-one-object-precategory-Monoid = associative-comp-hom-one-object-precategory-Monoid id-hom-one-object-precategory-Monoid : (x : unit) → type-hom-one-object-precategory-Monoid x x id-hom-one-object-precategory-Monoid star = unit-Monoid M left-unit-law-comp-hom-one-object-precategory-Monoid : {x y : unit} (f : type-hom-one-object-precategory-Monoid x y) → comp-hom-one-object-precategory-Monoid ( id-hom-one-object-precategory-Monoid y) ( f) = f left-unit-law-comp-hom-one-object-precategory-Monoid {star} {star} = left-unit-law-mul-Monoid M right-unit-law-comp-hom-one-object-precategory-Monoid : {x y : unit} (f : type-hom-one-object-precategory-Monoid x y) → comp-hom-one-object-precategory-Monoid ( f) ( id-hom-one-object-precategory-Monoid x) = f right-unit-law-comp-hom-one-object-precategory-Monoid {star} {star} = right-unit-law-mul-Monoid M is-unital-composition-structure-one-object-precategory-Monoid : is-unital-composition-structure-Set hom-one-object-precategory-Monoid associative-composition-structure-one-object-precategory-Monoid pr1 is-unital-composition-structure-one-object-precategory-Monoid = id-hom-one-object-precategory-Monoid pr1 (pr2 is-unital-composition-structure-one-object-precategory-Monoid) = left-unit-law-comp-hom-one-object-precategory-Monoid pr2 (pr2 is-unital-composition-structure-one-object-precategory-Monoid) = right-unit-law-comp-hom-one-object-precategory-Monoid precategory-one-object-precategory-Monoid : Precategory lzero l pr1 precategory-one-object-precategory-Monoid = unit pr1 (pr2 precategory-one-object-precategory-Monoid) = hom-one-object-precategory-Monoid pr1 (pr2 (pr2 precategory-one-object-precategory-Monoid)) = associative-composition-structure-one-object-precategory-Monoid pr2 (pr2 (pr2 precategory-one-object-precategory-Monoid)) = is-unital-composition-structure-one-object-precategory-Monoid one-object-precategory-Monoid : One-Object-Precategory lzero l pr1 one-object-precategory-Monoid = precategory-one-object-precategory-Monoid pr2 one-object-precategory-Monoid = is-contr-unit
Monoids from one-object precategories
monoid-One-Object-Precategory : {l1 l2 : Level} → One-Object-Precategory l1 l2 → Monoid l2 monoid-One-Object-Precategory P = monoid-endo-Precategory ( precategory-One-Object-Precategory P) ( object-One-Object-Precategory P)
Recent changes
- 2023-09-15. Fredrik Bakke. Define representations of monoids (#765).