Whiskering homotopies
Content created by Egbert Rijke
Created on 2023-09-12.
Last modified on 2023-09-12.
module foundation.whiskering-homotopies where open import foundation-core.whiskering-homotopies public
Imports
open import foundation.action-on-identifications-functions open import foundation.function-extensionality open import foundation.universe-levels open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types
Idea
There are two whiskering operations on homotopies. The left whiskering operation assumes a diagram of the form
f
-----> h
A -----> B -----> C
g
and is defined to be a function h ·l_ : (f ~ g) → (h ∘ f ~ h ∘ g)
. The right
whiskering operation assumes a diagram of the form
g
f ----->
A -----> B -----> C
h
and is defined to be a function _·r f : (g ~ h) → (g ∘ f ~ h ∘ f)
.
Note: The infix whiskering operators _·l_
and _·r_
use the
middle dot ·
(agda-input: \cdot
\centerdot
), as opposed to the infix homotopy concatenation operator _∙h_
which uses the bullet operator ∙
(agda-input:
\.
). If these look the same in your editor, we suggest that you change your
font. For more details, see How to install.
Properties
Computation of function extensionality on whiskerings
module _ { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} { f g : B → C} (h : A → B) where compute-eq-htpy-htpy-eq-right-whisk : ( p : f = g) → eq-htpy ((htpy-eq p) ·r h) = ap (precomp h C) p compute-eq-htpy-htpy-eq-right-whisk refl = eq-htpy-refl-htpy (f ∘ h) compute-eq-htpy-right-whisk : ( H : f ~ g) → eq-htpy (H ·r h) = ap (precomp h C) (eq-htpy H) compute-eq-htpy-right-whisk H = ( ap ( λ K → eq-htpy (K ·r h)) ( inv (is-section-eq-htpy H))) ∙ ( compute-eq-htpy-htpy-eq-right-whisk (eq-htpy H))
module _ { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} { f g : A → B} (h : B → C) where compute-eq-htpy-htpy-eq-left-whisk : ( p : f = g) → eq-htpy ( h ·l (htpy-eq p)) = ap (postcomp A h) p compute-eq-htpy-htpy-eq-left-whisk refl = eq-htpy-refl-htpy (h ∘ f) compute-eq-htpy-left-whisk : (H : f ~ g) → eq-htpy (h ·l H) = ap (postcomp A h) (eq-htpy H) compute-eq-htpy-left-whisk H = ( ap ( λ K → eq-htpy (h ·l K)) ( inv (is-section-eq-htpy H))) ∙ ( compute-eq-htpy-htpy-eq-left-whisk (eq-htpy H))
Recent changes
- 2023-09-12. Egbert Rijke. Factoring out whiskering (#756).