Large posets
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Julian KG, fernabnor and louismntnu
Created on 2022-04-21.
Last modified on 2023-09-15.
module order-theory.large-posets where
Imports
open import category-theory.isomorphisms-in-precategories open import category-theory.large-categories open import category-theory.large-precategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.large-binary-relations open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import order-theory.large-preorders open import order-theory.posets open import order-theory.preorders
Idea
A large poset is a large preorder such that the restriction of the ordering relation to any particular universe level is antisymmetric.
Definition
record Large-Poset (α : Level → Level) (β : Level → Level → Level) : UUω where constructor make-Large-Poset field large-preorder-Large-Poset : Large-Preorder α β antisymmetric-leq-Large-Poset : is-large-antisymmetric ( type-Large-Preorder large-preorder-Large-Poset) ( leq-Large-Preorder large-preorder-Large-Poset) open Large-Poset public module _ {α : Level → Level} {β : Level → Level → Level} (X : Large-Poset α β) where type-Large-Poset : (l : Level) → UU (α l) type-Large-Poset = type-Large-Preorder (large-preorder-Large-Poset X) leq-Large-Poset-Prop : Large-Relation-Prop α β (type-Large-Poset) leq-Large-Poset-Prop = leq-Large-Preorder-Prop (large-preorder-Large-Poset X) leq-Large-Poset : Large-Relation α β (type-Large-Poset) leq-Large-Poset = leq-Large-Preorder (large-preorder-Large-Poset X) is-prop-leq-Large-Poset : is-prop-Large-Relation (type-Large-Poset) (leq-Large-Poset) is-prop-leq-Large-Poset = is-prop-leq-Large-Preorder (large-preorder-Large-Poset X) leq-eq-Large-Poset : {l1 : Level} {x y : type-Large-Poset l1} → (x = y) → leq-Large-Poset x y leq-eq-Large-Poset = leq-eq-Large-Preorder (large-preorder-Large-Poset X) refl-leq-Large-Poset : is-large-reflexive type-Large-Poset leq-Large-Poset refl-leq-Large-Poset = refl-leq-Large-Preorder (large-preorder-Large-Poset X) transitive-leq-Large-Poset : is-large-transitive type-Large-Poset leq-Large-Poset transitive-leq-Large-Poset = transitive-leq-Large-Preorder (large-preorder-Large-Poset X)
Properties
Small posets from large posets
preorder-Large-Poset : (l : Level) → Preorder (α l) (β l l) preorder-Large-Poset = preorder-Large-Preorder (large-preorder-Large-Poset X) poset-Large-Poset : (l : Level) → Poset (α l) (β l l) pr1 (poset-Large-Poset l) = preorder-Large-Poset l pr2 (poset-Large-Poset l) = antisymmetric-leq-Large-Poset X set-Large-Poset : (l : Level) → Set (α l) set-Large-Poset l = set-Poset (poset-Large-Poset l) is-set-type-Large-Poset : {l : Level} → is-set (type-Large-Poset l) is-set-type-Large-Poset {l} = is-set-type-Poset (poset-Large-Poset l)
Large posets are large categories
large-precategory-Large-Poset : Large-Precategory α β large-precategory-Large-Poset = large-precategory-Large-Preorder (large-preorder-Large-Poset X) precategory-Large-Poset : (l : Level) → Precategory (α l) (β l l) precategory-Large-Poset = precategory-Large-Precategory large-precategory-Large-Poset is-large-category-Large-Poset : is-large-category-Large-Precategory large-precategory-Large-Poset is-large-category-Large-Poset {l} x y = is-equiv-is-prop ( is-set-type-Large-Poset x y) ( is-prop-iso-Precategory ( precategory-Large-Poset l) x y (is-prop-leq-Large-Poset x y)) ( λ f → antisymmetric-leq-Large-Poset X x y ( hom-iso-Precategory (precategory-Large-Poset l) f) ( hom-inv-iso-Precategory (precategory-Large-Poset l) f)) large-category-Large-Poset : Large-Category α β large-precategory-Large-Category large-category-Large-Poset = large-precategory-Large-Poset is-large-category-Large-Category large-category-Large-Poset = is-large-category-Large-Poset
Recent changes
- 2023-09-15. Egbert Rijke. update contributors, remove unused imports (#772).
- 2023-09-13. Fredrik Bakke and Egbert Rijke. Refactor structured monoids (#761).
- 2023-08-01. Fredrik Bakke. Small constructions from large ones in order theory (#680).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).
- 2023-05-12. Egbert Rijke. Subframes and quotient locales via nuclei (#613).