Initial objects of a precategory

Content created by Egbert Rijke and Fredrik Bakke

Created on 2023-09-13.
Last modified on 2023-09-13.

module category-theory.initial-objects-in-precategories where
Imports
open import category-theory.precategories

open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.universe-levels

open import foundation-core.identity-types

Idea

The initial object of a precategory (if it exists) is an object with the universal property that there is a unique morphism from it to any object.

Definition

initial-object-Precategory :
  {l1 l2 : Level} (C : Precategory l1 l2)  UU (l1  l2)
initial-object-Precategory C =
  Σ (obj-Precategory C) λ i 
    (x : obj-Precategory C)  is-contr (type-hom-Precategory C i x)

module _
  {l1 l2 : Level} (C : Precategory l1 l2)
  (i : initial-object-Precategory C)
  where

  object-initial-object-Precategory : obj-Precategory C
  object-initial-object-Precategory = pr1 i

  morphism-initial-object-Precategory :
    (x : obj-Precategory C) 
    type-hom-Precategory C object-initial-object-Precategory x
  morphism-initial-object-Precategory x = pr1 (pr2 i x)

  is-unique-morphism-initial-object-Precategory :
    (x : obj-Precategory C)
    (f : type-hom-Precategory C object-initial-object-Precategory x) 
    morphism-initial-object-Precategory x  f
  is-unique-morphism-initial-object-Precategory x = pr2 (pr2 i x)

Recent changes