Surjective group homomorphisms
Content created by Egbert Rijke and Fredrik Bakke
Created on 2023-08-21.
Last modified on 2023-08-21.
module group-theory.surjective-group-homomorphisms where
Imports
open import foundation.propositions open import foundation.surjective-maps open import foundation.universe-levels open import group-theory.groups open import group-theory.homomorphisms-groups
A group homomorphism f : G → H
is said
to be surjective if its underlying map is
surjective
Definition
Surjective group homomorphisms
module _ {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : type-hom-Group G H) where is-surjective-prop-hom-Group : Prop (l1 ⊔ l2) is-surjective-prop-hom-Group = is-surjective-Prop (map-hom-Group G H f) is-surjective-hom-Group : UU (l1 ⊔ l2) is-surjective-hom-Group = type-Prop is-surjective-prop-hom-Group is-prop-is-surjective-hom-Group : is-prop is-surjective-hom-Group is-prop-is-surjective-hom-Group = is-prop-type-Prop is-surjective-prop-hom-Group
Recent changes
- 2023-08-21. Egbert Rijke and Fredrik Bakke. Cyclic groups (#697).