Images of group homomorphisms
Content created by Egbert Rijke and Fredrik Bakke
Created on 2023-08-21.
Last modified on 2023-09-12.
module group-theory.images-of-group-homomorphisms where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.images open import foundation.logical-equivalences open import foundation.propositional-truncations open import foundation.universal-property-image open import foundation.universe-levels open import group-theory.full-subgroups open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.subgroups open import group-theory.subsets-groups open import group-theory.surjective-group-homomorphisms
Idea
The image of a
group homomorphism f : G → H
contains
the unit element and is closed under multiplication and inverses. It is
therefore a subgroup of the
group H
. Alternatively, it can be described as the
least subgroup of H
that contains all the values of f
.
Definitions
The universal property of the image of a group homomorphism
module _ {l1 l2 l3 : Level} (G : Group l1) (H : Group l2) (f : type-hom-Group G H) (K : Subgroup l3 H) where is-image-hom-Group : UUω is-image-hom-Group = {l : Level} (L : Subgroup l H) → leq-Subgroup H K L ↔ ((g : type-Group G) → is-in-Subgroup H L (map-hom-Group G H f g))
The image subgroup of a group homomorphism
module _ {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : type-hom-Group G H) where subset-image-hom-Group : subset-Group (l1 ⊔ l2) H subset-image-hom-Group = subtype-im (map-hom-Group G H f) is-image-subtype-subset-image-hom-Group : is-image-subtype (map-hom-Group G H f) subset-image-hom-Group is-image-subtype-subset-image-hom-Group = is-image-subtype-subtype-im (map-hom-Group G H f) abstract contains-unit-image-hom-Group : contains-unit-subset-Group H subset-image-hom-Group contains-unit-image-hom-Group = unit-trunc-Prop (unit-Group G , preserves-unit-hom-Group G H f) abstract is-closed-under-multiplication-image-hom-Group : is-closed-under-multiplication-subset-Group H subset-image-hom-Group is-closed-under-multiplication-image-hom-Group x y K L = apply-twice-universal-property-trunc-Prop K L ( subset-image-hom-Group (mul-Group H x y)) ( λ { (g , refl) (h , refl) → unit-trunc-Prop ( mul-Group G g h , preserves-mul-hom-Group G H f g h)}) abstract is-closed-under-inv-image-hom-Group : is-closed-under-inv-subset-Group H subset-image-hom-Group is-closed-under-inv-image-hom-Group x K = apply-universal-property-trunc-Prop K ( subset-image-hom-Group (inv-Group H x)) ( λ { (g , refl) → unit-trunc-Prop ( inv-Group G g , preserves-inv-hom-Group G H f g)}) is-subgroup-image-hom-Group : is-subgroup-subset-Group H subset-image-hom-Group pr1 is-subgroup-image-hom-Group = contains-unit-image-hom-Group pr1 (pr2 is-subgroup-image-hom-Group) = is-closed-under-multiplication-image-hom-Group pr2 (pr2 is-subgroup-image-hom-Group) = is-closed-under-inv-image-hom-Group image-hom-Group : Subgroup (l1 ⊔ l2) H pr1 image-hom-Group = subset-image-hom-Group pr2 image-hom-Group = is-subgroup-image-hom-Group is-image-image-hom-Group : is-image-hom-Group G H f image-hom-Group is-image-image-hom-Group K = is-image-subtype-subset-image-hom-Group (subset-Subgroup H K) contains-values-image-hom-Group : (g : type-Group G) → is-in-Subgroup H image-hom-Group (map-hom-Group G H f g) contains-values-image-hom-Group = forward-implication ( is-image-image-hom-Group image-hom-Group) ( refl-leq-Subgroup H image-hom-Group) leq-image-hom-Group : {l : Level} (K : Subgroup l H) → ((g : type-Group G) → is-in-Subgroup H K (map-hom-Group G H f g)) → leq-Subgroup H image-hom-Group K leq-image-hom-Group K = backward-implication (is-image-image-hom-Group K)
Properties
A group homomorphism is surjective if and only if its image is the full subgroup
module _ {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : type-hom-Group G H) where is-surjective-is-full-subgroup-image-hom-Group : is-full-Subgroup H (image-hom-Group G H f) → is-surjective-hom-Group G H f is-surjective-is-full-subgroup-image-hom-Group u = u is-full-subgroup-image-is-surjective-hom-Group : is-surjective-hom-Group G H f → is-full-Subgroup H (image-hom-Group G H f) is-full-subgroup-image-is-surjective-hom-Group u = u
Recent changes
- 2023-09-12. Egbert Rijke. Beyond foundation (#751).
- 2023-08-21. Egbert Rijke and Fredrik Bakke. Cyclic groups (#697).