Powers of elements in groups

Content created by Egbert Rijke and Fredrik Bakke

Created on 2023-08-21.
Last modified on 2023-09-12.

module group-theory.powers-of-elements-groups where
Imports
open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.multiplication-natural-numbers
open import elementary-number-theory.natural-numbers

open import foundation.identity-types
open import foundation.universe-levels

open import group-theory.commuting-elements-groups
open import group-theory.groups
open import group-theory.homomorphisms-groups
open import group-theory.powers-of-elements-monoids

Idea

The power operation on a group is the map n x ↦ xⁿ, which is defined by iteratively multiplying x with itself n times. We define this operation where n ranges over the natural numbers, as well as where n ranges over the integers.

Definition

Powers by natural numbers of group elements

module _
  {l : Level} (G : Group l)
  where

  power-Group :   type-Group G  type-Group G
  power-Group = power-Monoid (monoid-Group G)

Properties

1ⁿ = 1

module _
  {l : Level} (G : Group l)
  where

  power-unit-Group :
    (n : )  power-Group G n (unit-Group G)  unit-Group G
  power-unit-Group = power-unit-Monoid (monoid-Group G)

xⁿ⁺¹ = xⁿx

module _
  {l : Level} (G : Group l)
  where

  power-succ-Group :
    (n : ) (x : type-Group G) 
    power-Group G (succ-ℕ n) x  mul-Group G (power-Group G n x) x
  power-succ-Group = power-succ-Monoid (monoid-Group G)

xⁿ⁺¹ = xxⁿ

module _
  {l : Level} (G : Group l)
  where

  power-succ-Group' :
    (n : ) (x : type-Group G) 
    power-Group G (succ-ℕ n) x  mul-Group G x (power-Group G n x)
  power-succ-Group' = power-succ-Monoid' (monoid-Group G)

Powers by sums of natural numbers are products of powers

module _
  {l : Level} (G : Group l)
  where

  distributive-power-add-Group :
    (m n : ) {x : type-Group G} 
    power-Group G (m +ℕ n) x 
    mul-Group G (power-Group G m x) (power-Group G n x)
  distributive-power-add-Group = distributive-power-add-Monoid (monoid-Group G)

If x commutes with y then so do their powers

module _
  {l : Level} (G : Group l)
  where

  commute-powers-Group' :
    (n : ) {x y : type-Group G} 
    commute-Group G x y  commute-Group G (power-Group G n x) y
  commute-powers-Group' = commute-powers-Monoid' (monoid-Group G)

  commute-powers-Group :
    (m n : ) {x y : type-Group G} 
    commute-Group G x y 
    commute-Group G (power-Group G m x) (power-Group G n y)
  commute-powers-Group = commute-powers-Monoid (monoid-Group G)

If x commutes with y, then powers distribute over the product of x and y

module _
  {l : Level} (G : Group l)
  where

  distributive-power-mul-Group :
    (n : ) {x y : type-Group G} 
    (H : mul-Group G x y  mul-Group G y x) 
    power-Group G n (mul-Group G x y) 
    mul-Group G (power-Group G n x) (power-Group G n y)
  distributive-power-mul-Group =
    distributive-power-mul-Monoid (monoid-Group G)

Powers by products of natural numbers are iterated powers

module _
  {l : Level} (G : Group l)
  where

  power-mul-Group :
    (m n : ) {x : type-Group G} 
    power-Group G (m *ℕ n) x  power-Group G n (power-Group G m x)
  power-mul-Group = power-mul-Monoid (monoid-Group G)

Group homomorphisms preserve powers

module _
  {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : type-hom-Group G H)
  where

  preserves-powers-hom-Group :
    (n : ) (x : type-Group G) 
    map-hom-Group G H f (power-Group G n x) 
    power-Group H n (map-hom-Group G H f x)
  preserves-powers-hom-Group =
    preserves-powers-hom-Monoid
      ( monoid-Group G)
      ( monoid-Group H)
      ( hom-monoid-hom-Group G H f)

Recent changes