Local families
Content created by Egbert Rijke and Fredrik Bakke
Created on 2023-09-11.
Last modified on 2023-09-12.
module orthogonal-factorization-systems.local-families where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.propositions open import foundation.universe-levels open import orthogonal-factorization-systems.local-types
Idea
A family B : A → UU l
is said to be local at f : Y → X
, or
f
-local, if every fiber is.
Definition
is-local-family : {l1 l2 l3 l4 : Level} {Y : UU l1} {X : UU l2} (f : Y → X) {A : UU l3} → (A → UU l4) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-local-family f {A} B = (x : A) → is-local f (B x)
Properties
Being local is a property
module _ {l1 l2 : Level} {Y : UU l1} {X : UU l2} (f : Y → X) where is-property-is-local-family : {l3 l4 : Level} {A : UU l3} (B : A → UU l4) → is-prop (is-local-family f B) is-property-is-local-family B = is-prop-Π (λ x → is-property-is-equiv (precomp f (B x))) is-local-family-Prop : {l3 l4 : Level} {A : UU l3} (B : A → UU l4) → Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) pr1 (is-local-family-Prop B) = is-local-family f B pr2 (is-local-family-Prop B) = is-property-is-local-family B
A family is f
-local if and only if it is f
-orthogonal
This remains to be formalized.
See also
Recent changes
- 2023-09-12. Egbert Rijke. Beyond foundation (#751).
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-09-11. Fredrik Bakke and Egbert Rijke. Some computations for different notions of equivalence (#711).