Homotopies of natural transformations in large precategories
Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke and Elisabeth Bonnevier
Created on 2022-03-11.
Last modified on 2023-05-06.
module category-theory.homotopies-natural-transformations-large-precategories where
Imports
open import category-theory.functors-large-precategories open import category-theory.large-precategories open import category-theory.natural-transformations-large-precategories open import foundation.homotopies open import foundation.identity-types open import foundation.universe-levels
Idea
Two natural transformations α β : F ⇒ G are homotopic if for every object x
there is an identity Id (α x) (β x).
In UUω the usual identity type is not available. If it were, we would be able
to characterize the identity type of natural transformations from F to G as
the type of homotopies of natural transformations.
Definitions
Homotopies of natural transformations
module _ {αC αD γF γG : Level → Level} {βC βD : Level → Level → Level} {C : Large-Precategory αC βC} {D : Large-Precategory αD βD} {F : functor-Large-Precategory C D γF} {G : functor-Large-Precategory C D γG} where htpy-natural-transformation-Large-Precategory : (α β : natural-transformation-Large-Precategory F G) → UUω htpy-natural-transformation-Large-Precategory α β = { l : Level} (X : obj-Large-Precategory C l) → ( obj-natural-transformation-Large-Precategory α X) = ( obj-natural-transformation-Large-Precategory β X)
The reflexivity homotopy
module _ {αC αD γF γG : Level → Level} {βC βD : Level → Level → Level} {C : Large-Precategory αC βC} {D : Large-Precategory αD βD} {F : functor-Large-Precategory C D γF} {G : functor-Large-Precategory C D γG} where refl-htpy-natural-transformation-Large-Precategory : (α : natural-transformation-Large-Precategory F G) → htpy-natural-transformation-Large-Precategory α α refl-htpy-natural-transformation-Large-Precategory α = refl-htpy
Concatenation of homotopies
A homotopy from α to β can be concatenated with a homotopy from β to γ
to form a homotopy from α to γ. The concatenation is associative.
concat-htpy-natural-transformation-Large-Precategory : (α β γ : natural-transformation-Large-Precategory F G) → htpy-natural-transformation-Large-Precategory α β → htpy-natural-transformation-Large-Precategory β γ → htpy-natural-transformation-Large-Precategory α γ concat-htpy-natural-transformation-Large-Precategory α β γ H K X = H X ∙ K X associative-concat-htpy-natural-transformation-Large-Precategory : (α β γ δ : natural-transformation-Large-Precategory F G) (H : htpy-natural-transformation-Large-Precategory α β) (K : htpy-natural-transformation-Large-Precategory β γ) (L : htpy-natural-transformation-Large-Precategory γ δ) → {l : Level} (X : obj-Large-Precategory C l) → ( concat-htpy-natural-transformation-Large-Precategory α γ δ ( concat-htpy-natural-transformation-Large-Precategory α β γ H K) ( L) ( X)) = ( concat-htpy-natural-transformation-Large-Precategory α β δ ( H) ( concat-htpy-natural-transformation-Large-Precategory β γ δ K L) ( X)) associative-concat-htpy-natural-transformation-Large-Precategory α β γ δ H K L X = assoc (H X) (K X) (L X)
Recent changes
- 2023-05-06. Egbert Rijke. Big cleanup continued (#597).
- 2023-03-23. Fredrik Bakke. Some additions to and refactoring large types (#529).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).